Aerodynamic Design Optimisation for Complex Geometries Using Unstructured Grids
نویسنده
چکیده
منابع مشابه
An Application of the Quadrature-free Discontinuous Galerkin Method
The process of generating a block-structured mesh with the smoothness required for high-accuracy schemes is still a time-consuming process often measured in weeks or months. Unstructured grids about complex geometries are more easily generated, and for this reason, methods using unstructured grids have gained favor for aerodynamic analyses. The discontinuous Galerkin (DG) method is a compact ni...
متن کاملAIAA 2004–0533 Aerodynamic Shape Optimization of Complete Aircraft Configurations using Unstructured Grids
Adjoint based shape optimization methods have proven to be computationally efficient for aerodynamic problems. The majority of the studies on adjoint methods have used structured grids to discretize the computational domain. Due to the potential advantages of unstructured grids for complex configurations, in this study we have developed and validated a continuous adjoint formulation for unstruc...
متن کاملAnalysis and shape optimization in incompressible flows with unstructured grids
The aim of this study is to develop and validate numerical methods that perform shape optimization in incompressible flows using unstructured meshes. The three-dimensional Euler equations for compressible flow are modified using the idea of artificial compressibility and discretized on unstructured tetrahedral grids to provide estimates of pressure distributions for aerodynamic configurations. ...
متن کاملContinuous Adjoint Method for Unstructured Grids
Adjoint-based shape optimization methods have proven to be computationally efficient for aerodynamic problems. Themajority of the studies on adjoint methods have used structured grids to discretize the computational domain. Because of the potential advantages of unstructured grids for complex configurations, in this study we have developed and validated a continuous adjoint formulation for unst...
متن کاملConstruction of Hexahedral Block Topology and its Decomposition to Generate Initial Tetrahedral Grids for Aerodynamic Applications
Making an initial tetrahedral grid for complex geometry can be a tedious and time consuming task. This paper describes a novel procedure for generation of starting tetrahedral cells using hexahedral block topology. Hexahedral blocks are arranged around an aerodynamic body to form a flow domain. Each of the hexahedral blocks is then decomposed into six tetrahedral elements to obtain an initial t...
متن کامل